

EC190 (Revised February 2013)

Manure Nutrient and Land Requirement Estimator Spreadsheet Instructions

Version 1.0

This spreadsheet estimates a) excretion of nutrients and solids based upon ASAE Standard D384.2 and b) land requirements based upon USDA Natural Resources Conservation Service publication Agricultural Waste Management Field Handbook. This booklet provides instructions for using this spreadsheet.

Animal Manure Management Workgroup University of Nebraska-Lincoln

http://water.unl.edu/web/manure/contacts

Contact:

Amy Millmier Schmidt
Department of Biological Systems Engineering
University of Nebraska–Lincoln
Lincoln, NE 68583-0726
aschmidt@unl.edu
(402) 472-0877

The most current version of the spreadsheet is available at:

http://go.unl.edu/nut-inv

February 2013

Table of Contents

Introduction	3
Worksheet Instructions for:	
Getting Started	8
Species-Specific Worksheet.	10
N and P Available After Storage and Land Application Losses	14
Land Requirements to Utilize "Manure" Nutrients	17
Land Requirements to Utilize "Runoff" Nutrients	19
Land Requirements to Utilize "Sludge" Phosphorus	20
Summary Report for all Worksheets	21

Acknowledgments

The workgroup would like to express sincere appreciation to Rick K. Koelsch for the development of the spreadsheet and this publication and to those who reviewed the spreadsheet and/or instructions, including Wendy Powers, Iowa State University; Todd Applegate, Purdue University; Joe Harrison, Washington State University; Alan Rosenboom, Nebraska Department of Environmental Quality; Charles Shapiro, University of Nebraska–Lincoln; and Diego Ayala, USDA Natural Resources Conservation Service.

Software Requirements

The spreadsheet file was developed for Microsoft Excel 2000® or later. The file is about 2.4 MB in size. Because of the substantial use of macros for many operations, it will be difficult to adapt many of the features of this MS Excel spreadsheet to another spreadsheet product.

Introduction

Purpose

The Manure Nutrient and Land Requirement Estimator spreadsheet is designed to estimate the quantity of manure nitrogen, phosphorus, and solids excreted, based upon procedures in American Society of Agricultural and Biological Engineers Standard D384.2, *Manure Production and Characteristics.* Typical or average estimates of manure excretion are commonly inaccurate due to differences in animal performance or feeding program. This spreadsheet will produce a farmspecific estimate of manure excretion relevant to a wide range of dietary options and animal performance levels commonly observed in commercial production. The equations used in this spreadsheet are the result of a twoyear study by a team of animal scientists and agricultural engineers targeting methods to improve estimates of animal nutrient excretion and provide tools for integrating animal feeding choices and performance into comprehensive nutrient management planning processes.

This spreadsheet also will estimate a land base for managing the excreted nutrients. This tool uses procedures described in Chapter 11, Waste Utilization of the USDA Natural Resources Conservation Service publication, *Agricultural Waste Management Field Handbook.*¹ It will assist the user in estimating nutrient losses during storage and nutrient availability during land application. The resulting crop available nutrients are then balanced against the nutrient requirements of an individual farm's cropping system based on crop removal estimates. From this procedure an estimate of approximate land requirements for managing available nitrogen and phosphorus is made, based upon this information.

Caution

This planning procedure is designed to estimate land access requirements of manure nutrients. It is not a nutrient management plan. Other procedures and software tools should be used to determine field specific manure and fertilizer application rates. This tool is not intended for that purpose.

Overview of Process

This spreadsheet follows a five-step process to complete a farm-specific estimate of excretion and an appropriate land base for managing the nutrients in manure. Those steps are illustrated on the first page of the *Start Worksheet*. Associated with each step is a button that will take the user to the appropriate worksheet for that step. Once completed, a "Return" button brings the user back to this *Start Worksheet* to remind the user of the next step in the process. As each step is completed, a brief summary of the results of that step will be illustrated in blue on the *Start* worksheet.

Step 1 allows the user to identify the farm and consultant's contact information. It also asks the user to identify the sources of manure from the animal feeding operation. Up to four unique manure sources can be tracked by this program.

Step 2 provides the opportunity to enter the farm-specific information critical to estimating nutrient and solids excretion. Animal performance and feed program information is necessary if a farm specific estimate is to be made. For situations where such information is not available, an option is available for default entries which will estimate excretion for a "typical" animal, as defined in 2003. A unique data entry form is used for each animal species. To access that animal specific data entry form, click on the species name relevant to an individual farm. The program has the capability of tracking multiple species on an individual farm.

Step 3 allows the user to review the estimate of manure excretion. Manure excretion is summarized for nitrogen, elemental phosphorus (multiply by 2.29 for a P₂O₅ equivalent), total solids, volatile solids, manure weight, and manure volume (if a slurry or liquid manure). Manure excretion is summarized in both English and metric units.

Step 4 is used to estimate the retention of nitrogen and phosphorus 1) after losses occurring in the animal housing and manure storage and 2) after accounting for the crop availability of the manure nutrients. Default estimates of these two adjustments are available, based upon USDA Natural Resource Conservation Service procedures. The user has the opportunity to adjust these values to match accepted state or local estimates.

Step 5 uses three worksheets for estimating land requirements. The land requirements for managing both nitrogen and phosphorus are computed separately. A similar calculation is computed separately for 1) manure, 2) runoff from an open lot that is collected in a holding pond, and 3) sludge that collects in an anaerobic lagoon (if not regularly agitated).

¹Available online at policy.nrcs.usda.gov/viewerFS.aspx?hid=21430

Figure 1. Process for using the Manure Nutrient and Land Requirement Estimator spreadsheet.

Worksheets for Completing Calculations

To accomplish this, twelve Excel worksheets are contained within the Microsoft Excel® file "Nutrient and Land Estimator." They may be accessed by clicking on the appropriate "Name Tab" found at the bottom of each worksheet (*Figure 1*). The purpose of these worksheets are:

To describe the purpose of the work-Start sheet, record the contact information for the producer's operation and identify manure sources from this operation. Beef These species-specific worksheets estimate the excretion of total solids, vola-Dairy tile solids, nitrogen and phosphorus. In addition, based upon user supplied Horse input of end product moisture content, an estimate of total volume is made for Poultry-Egg slurry and liquid systems. In addition, this worksheet allows comparison of Poultry-Meat alternative feeding programs for their impact on nutrient excretion. Swine

After Losses

To adjust excreted nitrogen and phosphorus estimates of the species-specific worksheets based on estimates of storage and land application losses. Excreted N and P are adjusted to represent crop available N and P.

Land-Manure

To compare crop available N and P in the manure with the nutrient removal rates of individual fields to determine when sufficient land base is accessible to utilize the nutrients in manure.

Land-Runoff

Land-Sludge

To follow similar procedures as used in the *Land-Manure Worksheet* for estimating the land requirements for managing the N and P in runoff from an open lot system (assumes approximately 5 percent of excreted nutrients are contained in the runoff) and the P accumulated in the sludge within an anaerobic lagoon (assumes approximately 65 percent of excreted P is retained in the sludge).

Summary

To provide a summary of critical information from previous worksheets.

The "Manure Nutrient and Land Requirement Estimator" spreadsheet consists of 12 worksheets. Individual worksheets perform unique tasks such as estimating the manure excreted by dairy cows (*Dairy Worksheet*) or estimating the nutrients retained in the manure storage (*After Losses Worksheet*). Individual worksheets are accessed by clicking on the name of the worksheet found near the bottom of your screen.

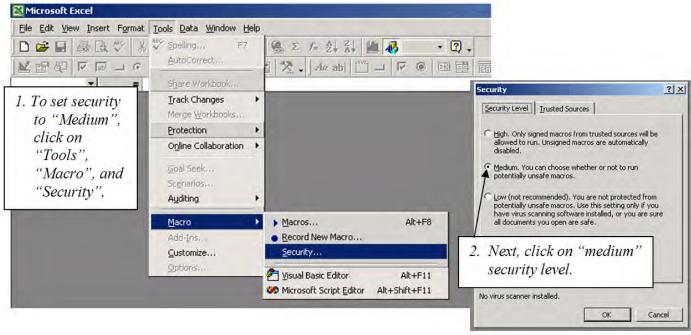


Figure 2. Process to enable the use of macros.

Instructions

- 1. **Activating Macros.** This spreadsheet contains many macros performing a wide variety of functions. Without these macros, many of the critical spreadsheet functions will be lost. Two steps are necessary to allow the use of these macros:
 - a. **Enabling Use of Macros** (*Figure 2*). When Excel is opened (without the Nutrient and Land Estimator application), the security level for Excel must be set to "Medium." To do this, click on "Tools" on the menu bar, then "Macro," and then "Security." This will expose the security window. Click on the "Medium" setting.
 - b. **Open the file "Nutrient and Land Estimator."** Then click on the "Enable Macros" button (*Figure 3*). Once the file is open, test the

- functioning of the macros by clicking any of the buttons on the spreadsheet. If they do not work, closed the file and repeat Step 1a.
- 2. **Save to New File Name.** The first thing you should do after opening this file is make a copy with a new name. Click on "file" and "save as." In the "file name" box, replace "Nutrient & Land Estimator" with a new name (e.g. "Nutrient & Land Estimator for John Doe"). This file should be saved periodically as each worksheet is completed to prevent loss from unexpected computer difficulties.
- 3. **Improve Screen View.** It is best to adjust the information that fits into a single screen to ensure that you can see all yellow background (User Viewing Area) within the left to right limits of the screen. Try these steps to adjust your viewing area:

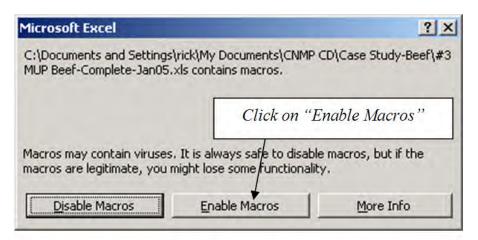


Figure 3. Final step to enable the use of macros.

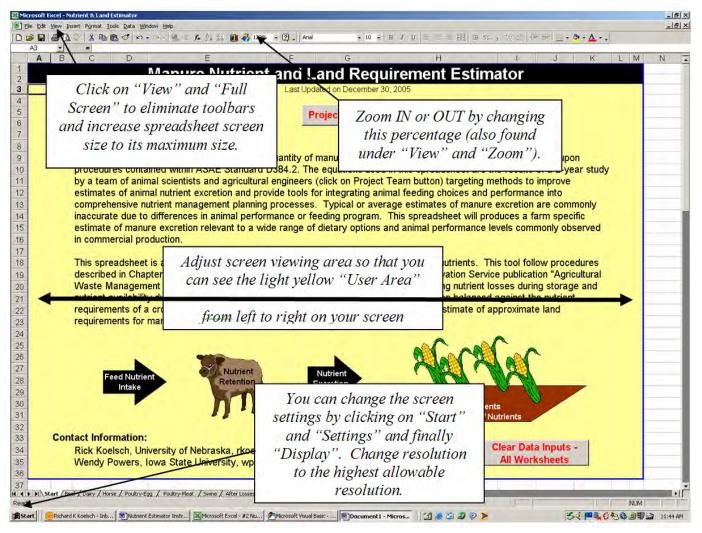


Figure 4. Adjusting the user viewing area.

- a. Click on "View" and then "Zoom." Adjust the "Percent Zoom" to your personal preference.
- b. To maximize the viewing area, select "View" from the menu bar and then "Full Screen." The unnecessary tool bars should disappear.
- c. Adjust the screen resolution by clicking on "Start" (lower left corner of most computer desktops), then "Settings," then "Display," and then "Settings" again. You can adjust screen size by going to a higher resolution such as 1280 x 1024 or 1400 x 1050. Generally the higher resolution will produce better viewing. If the text is difficult to read, increase its size with the "Zoom" option described in Step a above. This spreadsheet was created with the screen setting at 1400 x 1050.

Caution

Some computer monitors may be limited in the amount of information that can be displayed on a single screen.

- 4. For some worksheets, the entire contents may not appear on screen. Additional screen information can be viewed by clicking on the "Up" and "Down" arrows on the scroll bar at the right side of the screen and the "Left" and "Right" arrows at the bottom right corner of the screen, or use the scroll wheel on the mouse, if available.
- 5. Color codes are used to assist the user with these worksheets.

Aqua or light blue cells contain producer information. These locations are not protected and can be changed or updated as necessary.

Light yellow regions define spreadsheet areas for viewing by the user. Generally, there is no reason for most users to leave the light yellow regions of individual worksheets. Light yellow regions are protected from accidental changes.

White regions of the worksheet are used by the spreadsheet developer to calculate results and define user functions. Generally, most users will not need to view these regions.

Grey rectangles with red text are buttons for assisting with a variety of actions such as printing.

- 6. When you've finished reviewing the information on the *Start* worksheet, move to the appropriate species-specific worksheet by clicking on the appropriate tab at the bottom of the page or "Species-Specific" button under Step 2.
- 7. This would be an appropriate time to save your file to a new name. The "Save As" selection under the "File" option on the menu bar will allow you to change the name of the file and retain the original spreadsheet without changes for future use.

Start Worksheet

Start leef pairy brse legg stry-Meat wine Losses d-Runoff d-Manure d-Sludge mary



Figure 5. Sample page from the Start worksheet.

When the spreadsheet is started, the *Start* worksheet with the spreadsheet's purpose should be visible (*Figure 5*). If this screen is not visible, then click on the *Start* worksheet button (lower left corner of the screen) and use the scroll bars to move to the upper left corner of the worksheet. The *Start* worksheet has four pages for your use.

Introduction

The Introduction page gives a brief overview of the spreadsheet's purpose.

Instructions

The Instructions page provides a summary of procedures for

- 1) setting up an improved screen view,
- 2) color coding of the spreadsheet cells,

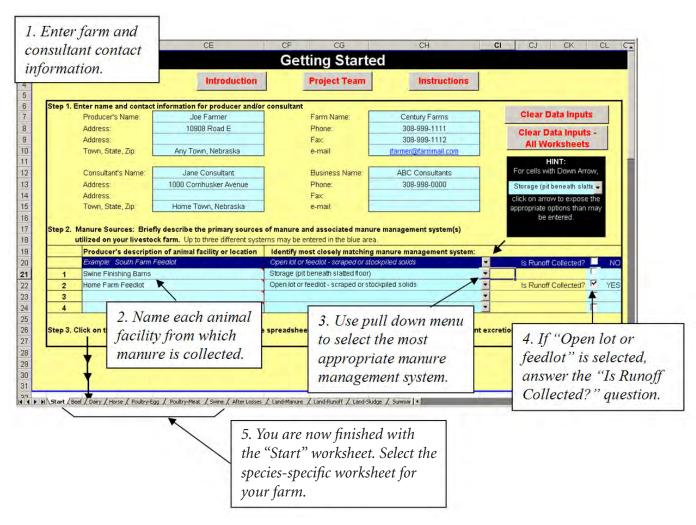


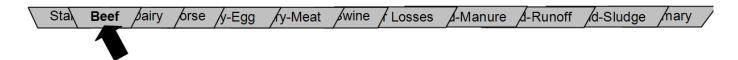
Figure 6. The Getting Started page provides a space to provide content information for the form and for a consultant.

- 3) layout of individual pages within the species-specific worksheets, and
- 4) overview of the five screens for estimating land requirements and summarizing the calculated results of this spreadsheet.

This same information was introduced in this instruction manual on pages 4, 5 and 6.

Project Team

The Project Team page lists the individuals who contributed to the development of the American Society of Agricultural and Biological Engineering standard upon which this spreadsheet's estimates of manure excretion is based.


Getting Started

The Getting Started page allows the user to 1) define contact information for the farm and contributing consultant, and 2) identify critical information about each of the facilities from which manure is collected.

Getting Started

The Getting Started page provides space for the user to define contact information for the farm and the consultant working with the farm, if appropriate. The producer's name and the farm name is repeated on all subsequent printouts so as to distinguish the results specific to an individual farm. The user must enter information about each animal facility from which manure is collected and will be tracked by this spreadsheet (*Figure 6*). Enter information requested in Steps 2 through 4 (essential for later calculation).

Species-Specific Worksheet Instructions

Purpose

Each species-specific worksheet will allow the user to enter farm specific ration and animal performance data needed to estimate the mass of manure solids, nitrogen and phosphorus excreted by an individual group of animals. Each worksheet also provides a tool for comparing the change in nutrient excretion for alternative feed nutrient concentrations.

Species-Specific Worksheet Layout

All species-specific worksheets contain five separate pages of information laid out horizontally. These worksheets can be accessed by clicking on the buttons illustrated in *Figure 7* below or by scrolling to the right and left. The left edge for each page in a species-specific worksheet is typically found in column...

Figure 7. Each species-specific worksheet contains five pages of information.

Data Inputs Page provides a space for entry of all animal performance, feed program and manure management system information.

Results of Calculations Page summarizes the estimates of excretion of nitrogen, phosphorus, total solids and volatile solids. It also estimates manure mass and volume.

Diet Impact on N Excretion Page allows the user to manipulate concentration of crude protein in the diet and review the impact on excretion.

Diet Impact on P Excretion Page allows the user to manipulate concentration of phosphorus in the diet and review the impact on excretion.

Calculation Page is used to perform the calculations leading to the "Results: Manure Excretion" contents.

Instructions for Data Input

- 1. **Conditions to be evaluated.** Describe the farm or conditions that will be evaluated in cell B6.
- Before entering any data, perform the following two tasks:
 - a. Select whether performance and feed data is to be in English or metric units by clicking on the arrow to the right of the cell "English or Metric" (typically under "Step 2. Enter performance data") and selecting one of the two options.
- b. Select whether feed measurements are to be entered on a wet or dry basis by clicking on the arrow to the right of the cell "Wet or Dry Basis?" (typically under "Step 3. Enter ration information") and selecting one of the two options.
- 3. **Default Inputs.** If farm specific information is not available for animal performance or ration information entries, typical or default values can be entered by clicking on the "Default" button found with each species specific page. Values will be entered for a "typical" animal as defined in the ASABE

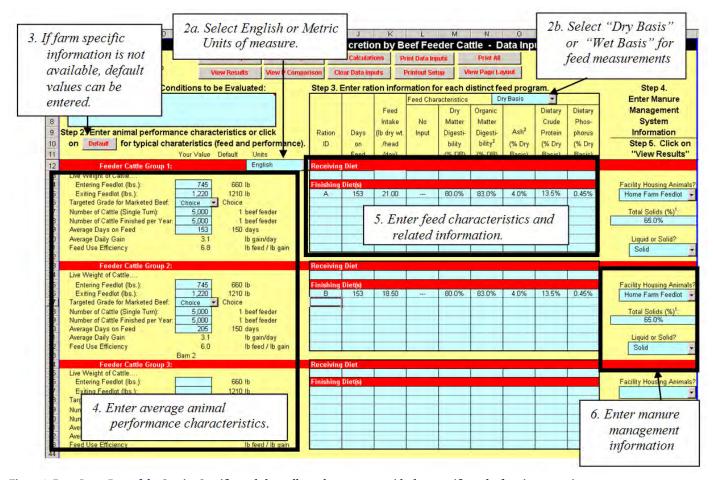


Figure 8. Data Input Page of the Species-Specific worksheet allows the user to provide data specific to the farming operation.

(American Society of Agricultural and Biological Engineers) Standard D384.2.

- 4. Animal Performance Inputs. Each species-specific worksheet has a slightly different layout and some differences in data inputs. Data inputs relative to animal performance are entered on the left side of all data input pages. Space is available to allow more than one group of animals from the same species to be characterized at one time. For example, a feedlot may bring both yearlings at 750 lbs and calves at 600 lbs into the feedlot. Because of the differences in feeding period, average feed intake, and performance, these two distinct groups should be entered separately.
- 5. **Feed Nutrient Intake.** The center of all data input pages contains space for entering characteristics such as days on feed, average daily feed intake and nutrient concentration. Some species data input pages will request dry matter digestibility and

- organic matter digestibility (optional). All species pages allow for more than one diet to be fed to a group of animals. For the beef cattle example, a transition diet may be fed for 10 days and a finishing ration may be fed for the next 150 days. Both diets would be entered on a separate line. Each diet that is unique in its crude protein or phosphorus concentration should be entered separately.
- 6. Manure Management System Information. The Data Inputs Page always requests three data inputs about the manure management system including, 1) facility housing animals, 2) manure total solids content (from a manure analysis report), and 3) liquid/slurry or solid type of manure. This data is entered on the right side of the data inputs page.
- 7. **When finished,** click on "Return" to jump to the *Start* page.

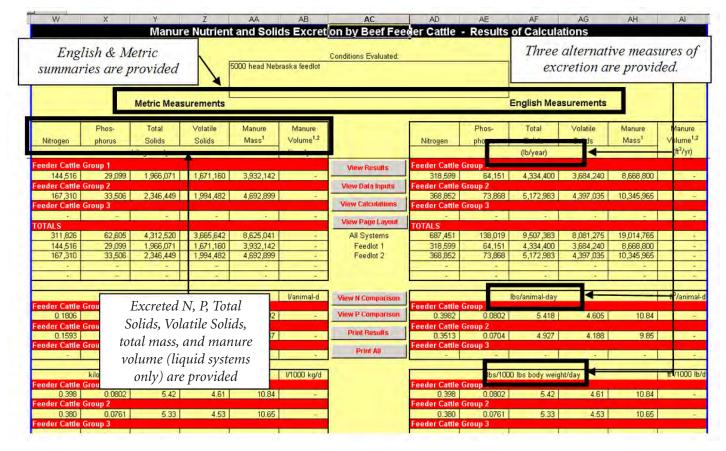


Figure 9. This page summarizes all manure excretion estimates.

Instructions for Results

- 1. You are now ready for Step 3 on the *Start page*. To view results, click on button for "(Species) Manure."
- 2. Results can be viewed in English or metric units, each measured in three ways (weight per year, weight per animal per day, and weight per unit animal body weight per day). Currently data is available for excretion of manure nitrogen, phosphorus, total solids and volatile solids (*Figure 9*). If a total solids
- content was entered in the Data Inputs page, then a wet manure weight and a manure volume (liquid systems only) is estimated.
- 3. This page may be printed by clicking on the "Print Results" button.
- 4. You may click on the "Return" button to jump to the *Start* page or proceed to other information on this species-specific page.

Diet Impact on P Excretion

Instructions for Diet Impact on N and P Excretion

What if the concentration of crude protein (N X 6.25) or phosphorus in the diet is changed? A page is provided for modifying the concentration of dietary crude protein and P and reviewing the resulting impact on both N and P excretion (*Figure 10*).

- The user can click on the aqua colored left and right arrows typically in column AS for nitrogen and BN for phosphorus (slightly different location for dairy) to manipulate the dietary nutrient concentration for a modified diet.
- The results of those changes can be viewed numerically (commonly in columns AU-AV for nitrogen and columns BP-BQ for phosphorus) and graphically.
- 3. A pie chart in the lower right corner of each of these pages summarizes the relative contribution of individual groups of animals to the total farm excretion.

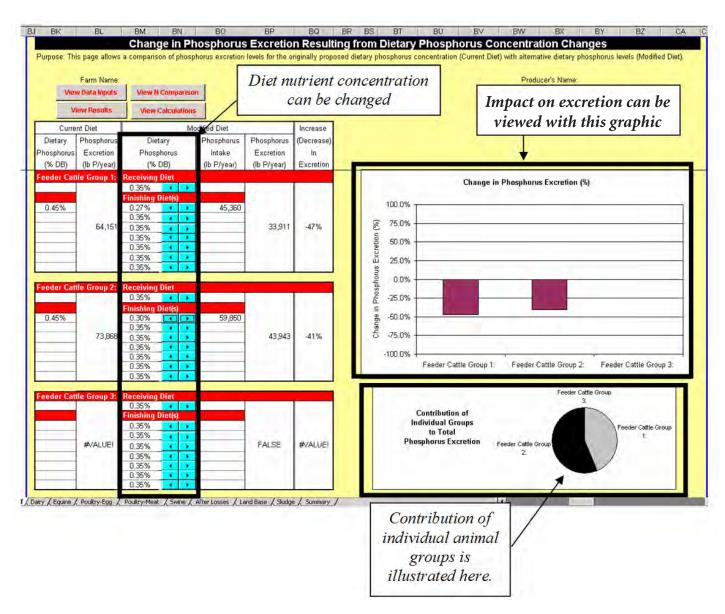


Figure 10. Worksheet page to modify the concentration of crude protein or phosphorus in the diet.

N and P Available After Storage and Land Application Losses

Start leef pairy orse ly-Egg lry-Meat After Losses A-Manure A-Runoff ld-Sludge mary

Purpose

The *After Losses* worksheet converts an estimate of excreted N and P to crop available N and P.

Instructions for Tables 1 and 2

- 1. If you are at the *Start* page, you are ready for Step 4. Click on the "After Losses" button. If you are at any other location, you can click on the "After Losses" tab at the bottom of the page.
- 2. The total manure nutrients excreted as estimated in the *Species-Specific* worksheet is summarized in Column E for each of four potential facilities.
- 3. An estimate of nutrients retained after losses is illustrated in Columns F and G. This estimate is based on the selected Manure Management System listed in Column D (user entered in *Start* and *Species-specific* worksheets). If the user prefers to use another estimate of nutrients retained, that value may be entered in the aqua colored cells immediately below the assumed value estimated by the spreadsheet. A calculation of nutrients in storage after losses will be based on the user input value. If no user value is available, then the calculations default to the estimate made by the spreadsheet.

Note that if the user identifies an open lot manure management system for one or more of the animal facilities, then an estimate is made of the nutrients collected in the runoff. The spreadsheet assumes that 5 percent of the excreted nutrients are retained in the runoff collection system. The user can enter another value in the aqua colored cell immediately below the assumed value.

- 4. An estimate is made of nitrogen retained after land application in Columns H through M. The user may supply information on
 - a) application method,
 - b) days between application and incorporation (only required if manure is surface applied), and
 - c) soil conditions (only required if manure is surface applied).

From these inputs, the spreadsheet estimates an organic and ammonium nitrogen availability and calculates a crop available nitrogen value. Users also can replace the assumed organic and ammonium nitrogen retention values with their own percent estimate in Columns K and L. The calculation of crop available N will then be based on the user inputs.

Caution

The organic nitrogen availability value in Column K is a summation of organic nitrogen that will become available over a four-year period following a single manure application. This estimate should not be used to prepare an annual nutrient plan as it will overestimate the nitrogen availability for a single year.

The land requirement estimated in subsequent worksheets will actually be more than what is needed in any one year. However, over a four-year period, the estimates of N-based land requirements will be equal to the total land the producer should utilize to avoid excess N application.

Table 2 follows a similar procedure for estimating P retention. Both the P retained in the storage and after land application losses is based upon the Manure Management System. As in *Table 1*, the default estimate of P retained can be replaced with a user value by typing in the desired retention value in the aqua colored cell immediately below the value assigned by the spreadsheet.

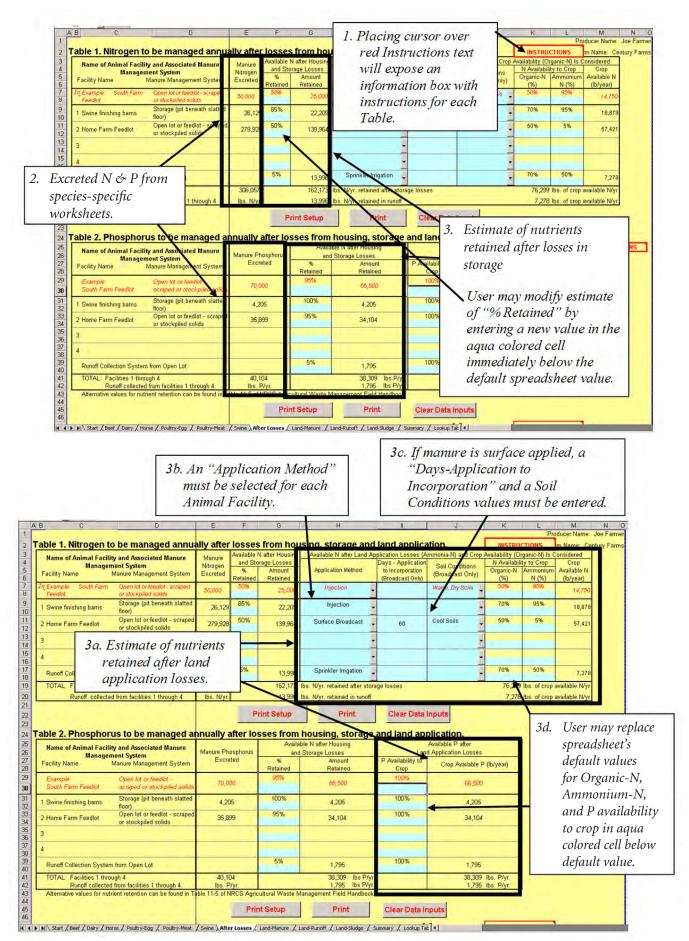


Figure 11. Sample page for estimating nutrients available after losses.

Table 3 Instructions

If a single cell or multiple cell anaerobic lagoon is selected as the manure management system for one of the four animal facilities, then *Table 3* will estimate the phosphorus retained in the sludge accumulating in the bottom of the lagoon. The user will need to identify the time between successive removals of sludge from the lagoon. The worksheet will estimate the approximate amount of phosphorus that has accumulated during that time. This estimate assumes that 65 percent of the phosphorus entering an anaerobic lagoon will settle and be found in the sludge. After completing this page, you may jump to the *Start* page by clicking on "Return."

Caution

Recognize that many factors affect manure nutrient availability. The estimates contained within this spreadsheet represent a reasonable estimate for typical conditions but may not be representative of individual situations.

Both ammonium and organic N availability during land application are dependent upon local climate. If local recommendations are available, they should be substituted for default values used by this spreadsheet. Individual state recommendations may vary from the estimates used in this worksheet. The NRCS Agricultural Waste Management Field Handbook served as the primary reference for the assumptions made in the *After Losses*, *Land Base*, and *Sludge* worksheets.

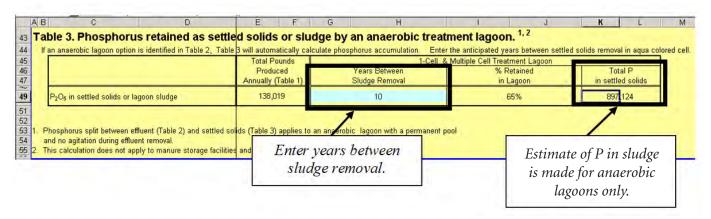


Figure 12. Sample page for phosphorus retained in anerobic lagoon sludge.

Land Requirements to Utilize "Manure" Nutrients

Start leef lairy orse ly-Egg lay-Meat land-Runoff land

You are now ready for Step 5, *Estimating Land Requirements*. If you are on the *Start* page, click on the "Manure" button. If you are at any other location, click on "Land-manure" at the bottom of the page.

Purpose

This worksheet will estimate the quantity of nutrients used by an existing land base if manure is applied at an agronomic rate as determined by either nitrogen or phosphorus. This worksheet also may be used to determine the necessary land base for agronomic utilization of the nutrients in manure.

Caution

This planning procedure is designed to estimate land access requirements of manure nutrients. It is not a nutrient management plan. Other procedures and software tools should be used to determine field specific manure and fertilizer application rates. This tool is not intended for that purpose.

Instructions

1. Enter individual field data for each field to receive manure, including field ID (Column B), crop acres (Column C), crop grown (Column E) and expected yield (Column F).

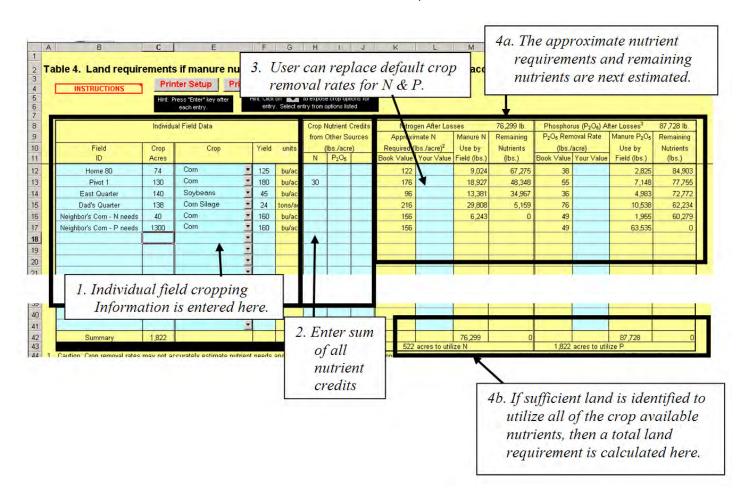


Figure 13. This worksheet page provides an estimate of how much land is needed for the agronomic utilization of nutrients in manure.

- If you prefer not to list individual fields, all acres of land in a similar crop and with a similar yield may be substituted for individual fields. For example, a farm in a corn-soybean rotation might have one entry for corn and a second for soybeans if most fields yield similarly. A farm with only irrigated and dryland corn production might list two fields, one for irrigated corn and a second for dryland corn.
- Sum all other nutrient credits and enter that sum for N (Column H) and P₂O₅ (Column I). Other nutrient credits may include commercial fertilizer, irrigation water, and legume credits.
- 3. If you do not agree with the default nutrient requirements for various crops, you may enter your own values for N (Column L) and P₂O₅ (Column P).
- 4. The nutrient requirements of each field will be deducted from the crop available N or P. An estimate of remaining N and P is listed in Columns N and R, respectively. The goal is to identify sufficient land so that no remaining nutrients are listed in these columns. When sufficient land has been identified to utilize an individual nutrient at an agronomic rate, a total land requirement will be listed in row 45. In *Figure 13*, the farm did not have sufficient land to manage all of the N or P. By adding 40 acres of neighbors' corn land, sufficient land was identified to utilize the nitrogen. However, by identifying an additional 1,300 acres of neighbors' corn crop, sufficient land is available for management of the phosphorus.
- 5. When finished, click on *Return* and jump to the *Start* page.

Land Requirements to Utilize Runoff Nutrients

Start leef lairy orse ly-Egg lay-Meat wine Losses la-Ma Land-Runoff d-Sludge mary

If you are at the *Start* page, click on "Runoff from Open Lots" button. If you are at any other location, click on "Land-Runoff" tab at the bottom of the worksheet.

Purpose

This worksheet will estimate the quantity of nutrients utilized by an existing land base if collected runoff from an open lot system is applied at an agronomic rate as determined by either nitrogen or phosphorus. This worksheet will determine the necessary land base for agronomic utilization of the nutrients in runoff.

Instructions

Follow the same procedures for this worksheet as are used for the *Land-Manure* worksheet described on pages 14-15.

Caution

This worksheet assumes that all of the nutrients in the runoff are applied as irrigation water. In reality, a significant portion of the nutrients will settle out as solids in a settling basin or in the holding pond. This procedure overestimates the land required for the liquid portion of nutrients in the runoff from an open lot system.

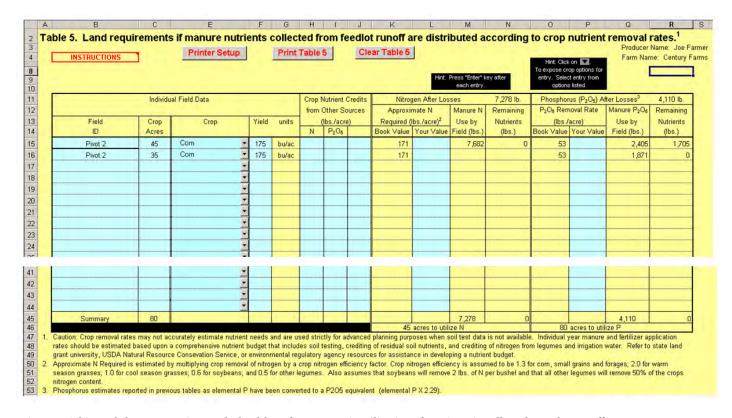


Figure 14. This worksheet page estimates the land-base for agronomic utilization of nutrients in collected open lot runoff.

Land Requirements to Utilize "Sludge" Phosphorus

Start leef pairy orse ly-Egg ry-Meat wine Losses A-Manure A-Ru Land-Sludge mary

Purpose

This worksheet estimates the land requirement if anaerobic lagoon sludge is applied at an agronomic rate based upon phosphorus. This worksheet should be used only if an anaerobic lagoon (storage with a permanent treatment pool) is part of the manure management system.

Caution

The land used for application of sludge should not be the same land that is receiving regular manure application. Additional land, possibly belonging to a neighbor, will need to be identified.

Instructions

If you are at the *Start* page, click on the "Lagoon Sludge" button. If you are at any other location, click on the "Land-Sludge" tab at the bottom of the page.

- Enter individual field data for each field to receive sludge including Field ID (Column C), Acres (Column D), Crop (Column F), and Expected Yield (Column G).
- 2. If you do not agree with the P₂O₅ crop removal rates, you may enter your own values (Column J).
- 3. Enter the number of years of phosphorus supply to be applied at one time (Column J). A phosphorus application sufficient to meet crop needs for three to five years may be acceptable. For fields with low soil phosphorus levels, higher rates might be considered to build soil P and organic matter levels.
- To estimate the change in soil phosphorus level, an initial soil P level may be entered in Column O (optional).
- 5. After checking the information entered, you are ready to move to the next worksheet. Click on the "Summary" worksheet tab.

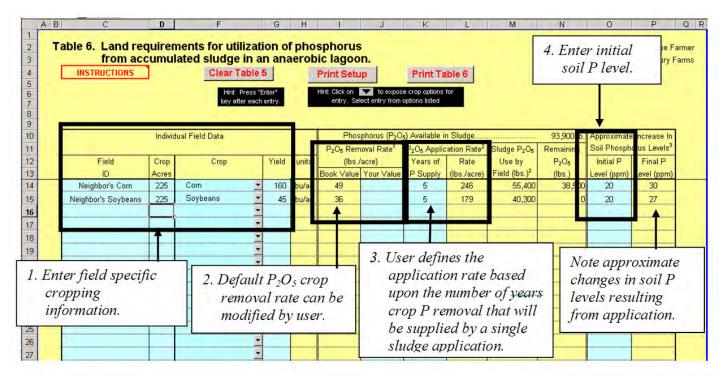


Figure 15. This worksheet page estimates land requirements for using phosphorus from accumulated sludge in an anaerobic lagoon.

Summary Report for all Worksheets

Start leef pairy orse ly-Egg ry-Meat wine Losses A-Manure A-Runoff of Summary

Purpose

This worksheet summarizes the results of the previous worksheets.

Instructions

Click on "Summary" at the bottom of any worksheet to move to the *Summary* worksheet.

Add comments to the aqua colored box that summarize the situation evaluated. This will be helpful when comparing alternative situations (e.g. alternative diets). A copy of the *Summary* worksheet for all worksheets including the *Summary* worksheet can be printed by clicking on the appropriate button illustrated below.

Print Summary

Print All

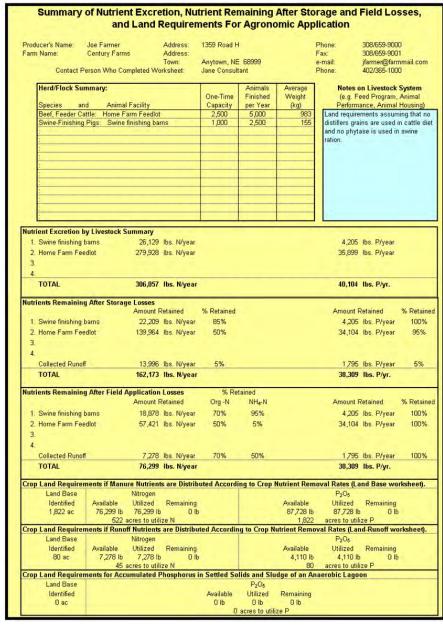


Figure 16. This worksheet page provides a summary of nutrient excretion, nutrient levels after storage and field losses, and land requirements for agronomic application.